Bimodal logics with a 'weakly connected' component without the finite model property

نویسنده

  • Ágnes Kurucz
چکیده

There are two known general results on the finite model property (fmp) of commutators [L0, L1] (bimodal logics with commuting and confluent modalities). If L is finitely axiomatisable by modal formulas having universal Horn first-order correspondents, then both [L,K] and [L,S5] are determined by classes of frames that admit filtration, and so have the fmp. On the negative side, if both L0 and L1 are determined by transitive frames and have frames of arbitrarily large depth, then [L0, L1] does not have the fmp. In this paper we show that commutators with a ‘weakly connected’ component often lack the fmp. Our results imply that the above positive result does not generalise to universally axiomatisable component logics, and even commutators without ‘transitive’ components such as [K3,K] can lack the fmp. We also generalise the above negative result to cases where one of the component logics has frames of depth one only, such as [S4.3,S5] and the decidable product logic S4.3×S5. We also show cases when already half of commutativity is enough to force infinite frames.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Products of ‘transitive’ modal logics without the (abstract) finite model property

It is well known that many two-dimensional products of modal logics with at least one ‘transitive’ (but not ‘symmetric’) component lack the product finite model property. Here we show that products of two ‘transitive’ logics (such as, e.g., K4 ×K4, S4 × S4, Grz×Grz and GL×GL) do not have the (abstract) finite model property either. These are the first known examples of 2D modal product logics w...

متن کامل

On Canonical Modal Logics That Are Not Elementarily Determined

There exist modal logics that are validated by their canonical frames but are not sound and complete for any elementary class of frames. Continuum many such bimodal logics are exhibited, including one of each degree of unsolvability, and all with the finite model property. Monomodal examples are also constructed that extend K4 and are related to the proof of non-canonicity of the McKinsey axiom.

متن کامل

Downward-directed transitive frames with universal relations

In this paper we identify modal logics of some bimodal Kripke frames corresponding to geometrical structures. Each of these frames is a set of ‘geometrical’ objects with some natural accessibility relation plus the universal relation. For these logics we present finite axiom systems and prove completeness. We also show that all these logics have the finite model property and are PSPACE-complete...

متن کامل

Non-primitive recursive decidability of products of modal logics with expanding domains

We show that—unlike products of ‘transitive’ modal logics which are usually undecidable— their ‘expanding domain’ relativisations can be decidable, though not in primitive recursive time. In particular, we prove the decidability and the finite expanding product model property of bimodal logics interpreted in two-dimensional structures where one component—call it the ‘flow of time’—is • a finite...

متن کامل

One-step Heyting Algebras and Hypersequent Calculi with the Bounded Proof Property

We investigate proof-theoretic properties of hypersequent calculi for intermediate logics using algebraic methods. More precisely, we consider a new weakly analytic subformula property (the bounded proof property) of such calculi. Despite being strictly weaker than both cut-elimination and the subformula property this property is sufficient to ensure decidability of finitely axiomatised calculi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Notre Dame Journal of Formal Logic

دوره 58  شماره 

صفحات  -

تاریخ انتشار 2017